OCR Physics Unit 4

Topic Questions from Papers

Circular Motion

physicsandmathstutor.com

2 (a) Fig. 2.1 shows the London Eye.

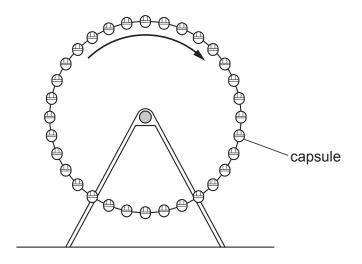


Fig. 2.1

It has 32 capsules equally spaced around the edge of a large vertical wheel of radius 60 m. The wheel rotates about a horizontal axis such that each capsule has a constant speed of $0.26\,\mathrm{m\,s^{-1}}$.

(i) Calculate the time taken for the wheel to make one complete rotation.

time = s [1]

(ii) Each capsule has a mass of 9.7×10^3 kg. Calculate the centripetal force which must act on the capsule to make it rotate with the wheel.

centripetal force = N [2]

(b) Fig. 2.2 shows the drum of a spin-dryer as it rotates. A dry sock **S** is shown on the inside surface of the side of the rotating drum.

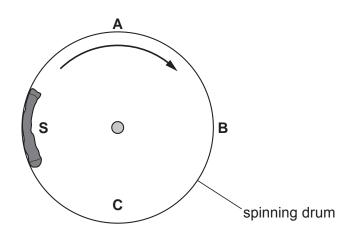


Fig. 2.2

- (i) Draw arrows on Fig. 2.2 to show the direction of the centripetal force acting on S when it is at points A, B and C.
 [1]
- (ii) State and explain at which position, **A**, **B** or **C** the normal contact force between the sock and the drum will be
 - 1 the greatest

2 the least. [2]

2 (a) Fig. 2.1 shows an aeroplane flying in a horizontal circle at constant speed. The weight of the aeroplane is *W* and *L* is the lift force acting at right angles to the wings.

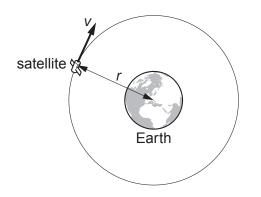
(i) Explain how the lift force *L* maintains the aeroplane flying in a **horizontal** circle.

(ii) The aeroplane of mass 1.2×10^5 kg is flying in a horizontal circle of radius 2.0 km.

The centripetal force acting on the aeroplane is 1.8×10^6 N. Calculate the speed of the aeroplane.

speed = ms⁻¹ [2]

(b) Fig. 2.2 shows a satellite orbiting the Earth at a constant speed v. The radius of the orbit is r.



- 2 (a) (i) State, in terms of force, the conditions necessary for an object to move in a circular path at constant speed.
 [1]
 (ii) Explain why this object is accelerating. State the direction of the acceleration.
 [2]
 (b) A satellite moves in a circular orbit around the Earth at a constant speed of 3700 m s⁻¹.
 - The mass *M* of the Earth is 6.0 × 10^{24} kg.

Calculate the radius of this orbit.

radius = m [4]

- (c) In order to move the satellite in (b) into a new smaller orbit, a decelerating force is applied for a brief period of time.
 - (i) Suggest how the decelerating force could be applied.

.....

(ii) The radius of this new orbit is 2.0×10^7 m. Calculate the speed of the satellite in this orbit.

speed = ms^{-1} [2]

[Total: 10]

Answer all the questions.

1 (a) (i) State Newton's first law of motion.

(ii)

[1] Define the *newton*.

- ---
-[1]
- (b) A jet plane on the deck of an aircraft carrier is accelerated before take-off using a catapult. The mass of the plane is 3.2×10^4 kg and it is accelerated from rest to a velocity of $55 \,\mathrm{m\,s^{-1}}$ in a time of 2.2 s. Calculate
 - (i) the mean acceleration of the plane

mean acceleration = $m s^{-2}$ [2]

(ii) the distance over which the acceleration takes place

distance = m [2]

(iii) the mean force producing the acceleration.

physicsandmathstutor.com

3

- (c) The jet plane describes a **horizontal** circle of radius 870m flying at a constant speed of $120 \,\mathrm{m\,s^{-1}}$.
 - (i) State the direction of the resultant horizontal force acting on the plane.

.....[1]

(ii) Calculate the magnitude of this horizontal force.

force =N [2]

- (d) By changing the velocity of the plane it can be made to fly in a **vertical** circle of radius 1500 m. At a particular point in the vertical circle, the contact force between the pilot and his seat may be zero and the pilot experiences "weightlessness".
 - (i) State and explain at what point in the circle this weightlessness may occur.

(ii) Calculate the speed of the plane at which weightlessness occurs.

speed =ms⁻¹ [2]

[Total: 14]

[1]

3 Fig. 3.1 shows apparatus used to investigate circular motion. The bung is attached by a continuous nylon thread to a weight carrier supporting a number of slotted masses which may be varied. The thread passes through a vertical glass tube. The bung can be made to move in a nearly horizontal circle at a steady high speed by a suitable movement of the hand holding the glass tube. A constant radius *r* of rotation can be maintained by the use of a reference mark on the thread.

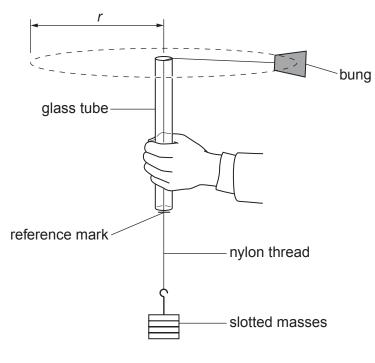


Fig. 3.1

- (a) (i) Draw an arrow labelled **F** on Fig. 3.1 to indicate the direction of the resultant force on the bung.
 - (ii) Explain how the speed of the bung remains constant even though there is a resultant force *F* acting on it.

(b) (i) Two students carry out an experiment using the apparatus in Fig. 3.1 to investigate the relationship between the force F acting on the bung and its speed v for a constant radius. Describe how they obtain the values of F and v.

.....[5] **1** Sketch, on Fig. 3.2, the expected graph of *F* against v^2 . (ii) 0 0 v^2 [1] Fig. 3.2 Explain how the graph can be used to determine the mass *m* of the bung. 2[2] [Total: 11]

Turn over

Data

Values are given to three significant figures, except where more are useful.

speed of light in a vacuum	С	$3.00 \times 10^8 \text{ m s}^{-1}$
permittivity of free space	ε	$8.85 imes 10^{-12} \text{ C}^2 \text{ N}^{-1} \text{ m}^{-2} \text{ (F m}^{-1)}$
elementary charge	е	$1.60\times 10^{-19}~{\rm C}$
Planck constant	h	$6.63 imes 10^{-34} \text{ J s}$
gravitational constant	G	$6.67 \times 10^{-11} \text{ N m}^2 \text{ kg}^{-2}$
Avogadro constant	N _A	$6.02\times10^{23}\ mol^{-1}$
molar gas constant	R	$8.31 \text{ J} \text{ mol}^{-1} \text{ K}^{-1}$
Boltzmann constant	k	$1.38 imes 10^{-23} \text{ J K}^{-1}$
electron rest mass	m _e	$9.11 imes 10^{-31} \mathrm{kg}$
proton rest mass	m _p	$1.673 \times 10^{-27} \text{ kg}$
neutron rest mass	m _n	$1.675 \times 10^{-27} \text{ kg}$
alpha particle rest mass	m _α	$6.646 \times 10^{-27} \text{ kg}$
acceleration of free fall	g	9.81 m s ⁻²

Conversion factors

unified atomic mass unit

electron-volt

1 u =
$$1.661 \times 10^{-27}$$
 kg
1 eV = 1.60×10^{-19} J
1 day = 8.64×10^4 s
1 year $\approx 3.16 \times 10^7$ s
1 light year $\approx 9.5 \times 10^{15}$ m

Mathematical equations

arc length = $r\theta$ circumference of circle = $2\pi r$ area of circle = πr^2 curved surface area of cylinder = $2\pi rh$ volume of cylinder = $\pi r^2 h$ surface area of sphere = $4\pi r^2$ volume of sphere = $\frac{4}{3}\pi r^3$ Pythagoras' theorem: $a^2 = b^2 + c^2$ For small angle $\theta \Rightarrow \sin\theta \approx \tan\theta \approx \theta$ and $\cos\theta \approx 1$ $\lg(AB) = \lg(A) + \lg(B)$

$$lg(\frac{A}{B}) = lg(A) - lg(B)$$
$$ln(x^n) = n ln(x)$$

 $\ln(\mathrm{e}^{kx}) = kx$

Formulae and relationships

Unit 1 – Mechanics	Unit 2 – Electrons, Waves and
$F_x = F \cos \theta$	$\Delta Q = I \Delta t$
$F_y = F \sin \theta$	I = Anev
$a = \frac{\Delta v}{\Delta t}$	W = VQ
v = u + at	V = IR
$s = \frac{1}{2} (u + v)t$	$R = \frac{\rho L}{A}$
$s = ut + \frac{1}{2}at^2$	$P = VI$ $P = I^2 R$ $P = \frac{V^2}{R}$
$v^2 = u^2 + 2as$	W = VIt
F = ma	e.m.f. = $V + Ir$
W = mg	$V_{\rm out} = \frac{R_2}{R_1 + R_2} \times V_{\rm in}$
moment = Fx	$v = f\lambda$
torque = Fd	v – JA
$\rho = \frac{m}{V}$	$\lambda = \frac{ax}{D}$
$p = \frac{F}{A}$	$d\sin\theta = n\lambda$
$W = Fx \cos \theta$	$E = hf$ $E = \frac{hc}{\lambda}$
$E_{\rm k} = \frac{1}{2} m v^2$	$hf = \phi + KE_{max}$
$E_{\rm p} = mgh$	$\lambda = \frac{h}{mv}$
efficiency = $\frac{\text{useful energy output}}{\text{total energy input}} \times 100\%$	$R = R_1 + R_2 + \dots$
total energy input $F = kx$	$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \dots$
$E = \frac{1}{2} Fx \qquad E = \frac{1}{2} kx^2$	

stress = $\frac{F}{A}$

strain = $\frac{x}{L}$

Young modulus = $\frac{\text{stress}}{\text{strain}}$

Photons

$F = \frac{\Delta p}{\Delta t}$ E $v = \frac{2\pi r}{T}$ ŀ $a = \frac{v^2}{r}$ ŀ $F = \frac{mv^2}{r}$ ŀ $F = -\frac{GMm}{r^2}$ $g = \frac{F}{m}$ $g = -\frac{GM}{r^2}$ 4 $T^2 = \left(\frac{4\pi^2}{GM}\right)r^3$ $f = \frac{1}{T}$ τ7 $\omega = \frac{2\pi}{T} = 2\pi f$ ($a = -(2\pi f)^2 x$ $x = A \cos(2\pi ft)$ $v_{\rm max} = (2\pi f) A$ ti $E = mc\Delta\theta$ pV = NkTpV = nRT(3

$$E = \frac{3}{2} kT$$

Unit 5 – Fields, Particles and Frontiers of **Physics**

$$E = \frac{F}{Q}$$

$$F = \frac{Qq}{4\pi\varepsilon_0 r^2}$$

$$E = \frac{Q}{4\pi\varepsilon_0 r^2}$$

$$E = \frac{V}{d}$$

$$F = BIL \sin\theta$$

$$F = BQv$$

$$\phi = BA \cos\theta$$
induced e.m.f. =

induced e.m.f. = - rate of change of magnetic flux linkage

$$\frac{V_{\rm s}}{V_{\rm p}} = \frac{n_{\rm s}}{n_{\rm p}}$$

$$Q = VC$$

$$W = \frac{1}{2} QV \qquad W = \frac{1}{2} CV^2$$

time constant =
$$CR$$

 $x = x_0 e^{-\frac{t}{CR}}$
 $C = C_1 + C_2 + ...$
 $\frac{1}{C} = \frac{1}{C_1} + \frac{1}{C_2} + ...$
 $A = \lambda N$
 $A = A_0 e^{-\lambda t}$
 $N = N_0 e^{-\lambda t}$
 $\lambda t_{1/2} = 0.693$
 $\Delta E = \Delta mc^2$
 $I = I_0 e^{-\mu x}$